If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-6=102
We move all terms to the left:
6x^2-6-(102)=0
We add all the numbers together, and all the variables
6x^2-108=0
a = 6; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·6·(-108)
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*6}=\frac{0-36\sqrt{2}}{12} =-\frac{36\sqrt{2}}{12} =-3\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*6}=\frac{0+36\sqrt{2}}{12} =\frac{36\sqrt{2}}{12} =3\sqrt{2} $
| -4n-5n=7(7-7n)+6(1+6n) | | 0.04=0.61-x | | 0.4=0.61-x | | 2v^2-8v-6=0 | | 15y-6=4y+8 | | 3^(2-x)=27^(x-2) | | 3^2-x=27^x-2 | | x^2-x+1=28 | | 4n+4=2n+17 | | 6x2=(3x2)x= | | 168^2+374^2=c^2 | | 391^2+120^2=c^2 | | 32+23x=180 | | 286.65^2+317.52^2=c^2 | | 125^2+300^2=c^2 | | 336^2+190^2=c^2 | | 461^2+229.84^2=c^ | | (2.5^(x+1))=15.625 | | (2.5^(x+1))-5=10.625 | | (7x-17)=(7x+1) | | (8x+1)=(x+26) | | (4x+8)=(2x+10) | | (x-2)+(x-14)=180 | | 5x+11=3x+30 | | 18=-15+3x | | 3h=-7+4h | | x+15=5*x-25 | | 17x+10+10x+10=70 | | 9+-4g=11.4 | | 10w+8=-1 | | (8+14)x10=(8x10)+(14x10) | | 7x+7=10-26 |